Pengaruh Gel Topikal SH-MSCs Terhadap Ekspresi Gen TNF-α Pada Tikus Wistar Model Alopesia Yang Diinduksi Fluconazole

Penulis

  • Angga Pria Sundawa Universitas Islam Sultan Agung Semarang
  • Annisa Nurul Hikmah Universitas Muhammadiyah Semarang
  • Ariesta Kurniasari Budi Fristiani Universitas Muhammadiyah Semarang
  • Tulus Ariyadi Universitas Muhammadiyah Semarang
  • Reza Adityas Trisnadi Universitas Islam Sultan Agung Semarang

DOI:

https://doi.org/10.57218/jkj.Vol4.Iss2.1811

Kata Kunci:

Alopecia like, Gel topikal SH-MHSCs, IL-10, TNF-α

Abstrak

Alopesia ditandai dengan gangguan siklus rambut, sementara terapi konvensional seperti minoksidil sering menimbulkan efek samping iritasi. Penelitian ini bertujuan menganalisis efek gel topikal sekretom mesenchymal stem cells terkondisi hipoksia (SH-MSCs) terhadap ekspresi gen TNF-α pada model alopesia. Sebanyak 24 ekor tikus Wistar jantan dibagi menjadi empat kelompok: kelompok sehat, kontrol negatif (alopesia + base gel), serta dua kelompok perlakuan yang diberi gel SH-MSCs dosis 100 μL/kgBB dan 200 μL/kgBB. Ekspresi gen TNF-α diukur dengan RT-PCR pada hari ke-22. Hasil menunjukkan penurunan ekspresi TNF-α yang signifikan (p < 0,001) pada kelompok perlakuan, dengan efek tertinggi pada dosis 200 μL/kgBB (0,63 ± 0,20) dibandingkan kontrol (2,54 ± 2,00). Analisis statistik dengan uji One-Way ANOVA dan post-hoc LSD mengonfirmasi perbedaan bermakna antar semua kelompok (p < 0,05). Kesimpulannya, gel topikal SH-MSCs dosis 200 μL/kgBB efektif menekan ekspresi TNF-α dan berpotensi sebagai terapi alternatif alopesia yang aman. Penelitian ini memberikan dasar preklinis untuk pengembangan terapi topikal berbasis sekretom.

Referensi

Darlan, D. M., Munir, D., Putra, A., & Jusuf, N. K. (2021). MSCs-released TGFβ1 generate CD4+ CD25+ Foxp3+ in T-reg cells of human SLE PBMC. Journal of the Formosan Medical Association, 120(1), 602–608. https://doi.org/https://doi.org/10.1016/j.jfma.2020.06.028

Deng, W., Zhang, Y., Wang, W., Song, A., Mukama, O., Huang, J., Han, X., Deng, S., Lin, Z., & Habimana, J. du D. (2021). Hair follicle-derived mesenchymal stem cells decrease alopecia areata mouse hair loss and reduce inflammation around the hair follicle. Stem Cell Research & Therapy, 12(1), 548. https://doi.org/https://doi.org/10.1186/s13287-021-02614-0

Ito, T., & Tokura, Y. (2014). The role of cytokines and chemokines in the T‐cell‐mediated autoimmune process in alopecia areata. Experimental Dermatology, 23(11), 787–791. https://doi.org/https://doi.org/10.1111/exd.12489

Kehl, D., Generali, M., Mallone, A., Heller, M., Uldry, A.-C., Cheng, P., Gantenbein, B., Hoerstrup, S. P., & Weber, B. (2019). Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regenerative Medicine, 4(1), 8. https://doi.org/https://doi.org/10.1038/s41536-019-0070-y

Li, Y., Wang, G., Wang, Q., Zhang, Y., Cui, L., & Huang, X. (2022). Exosomes secreted from adipose‐derived stem cells are a potential treatment agent for immune‐mediated alopecia. Journal of Immunology Research, 2022(1), 7471246. https://doi.org/https://doi.org/10.1155/2022/7471246

Madrigal, M., Rao, K. S., & Riordan, N. H. (2014). A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of Translational Medicine, 12(1), 260. https://doi.org/https://doi.org/10.1186/s12967-014-0260-8

Németh, K., Leelahavanichkul, A., Yuen, P. S. T., Mayer, B., Parmelee, A., Doi, K., Robey, P. G., Leelahavanichkul, K., Koller, B. H., & Brown, J. M. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15(1), 42–49. https://doi.org/https://doi.org/10.1038/nm.1905

Philpott, M. P., Sanders, D. A., Bowen, J., & Kealey, T. (1996). Effects of interleukins, colony‐stimulating factor and tumour necrosis factor on human hair follicle growth in vitro: a possible role for interleukin‐1 and tumour necrosis factor‐α in alopecia areata. British Journal of Dermatology, 135(6), 942–948. https://doi.org/https://doi.org/10.1046/j.1365-2133.1996.d01-1099.x

Pratt, C. H., King, L. E., Messenger, A. G., Christiano, A. M., & Sundberg, J. P. (2017). Alopecia areata. Nature Reviews Disease Primers, 3(1), 1–17. https://doi.org/https://doi.org/10.1038/nrdp.2017.11

Rossi, A., Cantisani, C., Melis, L., Iorio, A., Scali, E., & Calvieri, S. (2012). Minoxidil use in dermatology, side effects and recent patents. Recent Patents on Inflammation & Allergy Drug Discovery, 6(2), 130–136. https://doi.org/https://doi.org/10.2174/187221312800166859

Safavi, K. H., Muller, S. A., Suman, V. J., Moshell, A. N., & Melton III, L. J. (1995). Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clinic Proceedings, 70(7), 628–633. https://doi.org/https://doi.org/10.4065/70.7.628

Thompson III, G. R., Krois, C. R., Affolter, V. K., Everett, A. D., Varjonen, E. K., Sharon, V. R., Singapuri, A., Dennis, M., McHardy, I., & Yoo, H. S. (2019). Examination of fluconazole-induced alopecia in an animal model and human cohort. Antimicrobial Agents and Chemotherapy, 63(2), 10–1128. https://doi.org/https://doi.org/10.1128/aac.01384-18

Zhou, C., Li, X., Wang, C., & Zhang, J. (2021). Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clinical Reviews in Allergy & Immunology, 61(3), 403–423. https://doi.org/https://doi.org/10.1007/s12016-021-08883-0.

Unduhan

Diterbitkan

2025-09-30